
A Higher-Order Graph Convolutional Layer

Sami Abu-El-Haija1, Nazanin Alipourfard1, Hrayr Harutyunyan1,
Amol Kapoor2, Bryan Perozzi2

1Information Sciences Institute
University of Southern California

2Google AI
New York City, NY

{haija, nazanina, hrayrh}@isi.edu, {ajkapoor, bperozzi}@google.com,

Abstract

Recent methods generalize convolutional layers from Euclidean domains to graph-
structured data by approximating the eigenbasis of the graph Laplacian. The
computationally-efficient and broadly-used Graph ConvNet of Kipf & Welling
[11], over-simplifies the approximation, effectively rendering graph convolution as
a neighborhood-averaging operator. This simplification restricts the model from
learning delta operators, the very premise of the graph Laplacian. In this work,
we propose a new Graph Convolutional layer which mixes multiple powers of
the adjacency matrix, allowing it to learn delta operators. Our layer exhibits the
same memory footprint and computational complexity as a GCN. We illustrate
the strength of our proposed layer on both synthetic graph datasets, and on several
real-world citation graphs, setting the record state-of-the-art on Pubmed.

1 Introduction

Convolutional Neural Networks (CNNs) establish state-of-the-art performance on many Computer
Vision applications [12, 8, 17]. CNNs consist of a series of convolutional layers, each is parameterized
by a filter with pre-specified spatial dimensions. CNNs are powerful because they are able to learn a
hierarchy of feature detectors that is invariant to translations. Visualization experiments show that the
first layer learns oriented edge detectors. Higher layers can then learn a hierarchical representation of
these features to represent objects e.g. see [13, 12] for visualizations.

The success of CNNs on Computer Vision and other domains has motivated researchers [4, 5, 11]
to extend the convolutional operator from regular grids, in which the structure is fixed and repeated
everywhere, to graph-structured data, where nodes’ neighborhoods can greatly vary in structure
across the graph. Generalizing Convolution to graph structures should allow models to learn location-
invariant features. Consider a motivating example of predicting interests of users in an online social
network. Given user features (e.g. age, education) as well as their relationships (e.g. friend lists),
convolution should help to generalize “feature detectors” across graph nodes. For example, if user v
has similar features to, but shares no friends with user u, they should have similar representations if
their neighbors’ features are also similar.

The early extension of convolution onto graph-structed data [4], albeit theoretically motivated, is
not scalable to large graphs, requiring quadratic computational complexity in number of nodes. In
addition, it requires the graph to be completely observed during training, targeting the transductive
setting. Defferrard et al [5], Kipf & Welling [11] propose approximations to Graph Convolution
that are computationally-efficient (linear complexity, in the number of edges), and can be applied
in inductive settings, where the test graph is not observed during training. In this work, we study
the model of [11] because for its practical value: it is relatively-simple to implement and fast to

32nd Conference on Neural Information Processing Systems (NIPS 2018), Montréal, Canada.

×Â

×

W (l)

(a) Graph Convolution layer of [11].

×Â

×

W
(l)
1

×Â2

×

W
(l)
2

×Â3

×

W
(l)
3

concatenate

(b) Our proposed layer

Figure 1: Architectures of the Graph Convolution (GC) layer proposed by Kipf & Welling [11]
(left) compared with ours (right). Orange denotes the input activation matrix, one row per node,
gray denotes adjacency-times-input, red denotes layer output, and finally, trainable parameters are in
green. We highlight left- VS right-multiplication by the relative poisiton to the × operator. In all our
experiments, we set the total size of our model parameters W (l)

1 , W (l)
2 , and W (l)

3 , equal to the size
of baseline model parameters W (l). For saving vertical space, we skip depicting the element-wise
activation σ that is applied after the (red) output matrix in both models.

train. However, we try to circumvent the reduced modeling capacity made by the approximations.
Specifically, ones that prevent the model from capturing patterns analogous to edge1 detectors in
Computer Vision. Our main contribution is a new Graph Convolutional layer that mixes powers of
the adjacency matrix. Our model exhibits the same memory and computational complexity of [11],
but additionally allows us to learn delta operators, which was not possible with the model of [11].
The strength of our method is demonstrated on a number of synthetic and real-world citation graphs.

2 Background

2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) establish state-of-the-art performance on many applications
in Computer Vision [12, 8, 17]. CNNs consist of a series of convolutional layers. Each layer
calculates a location-equivarient transformation. This equivariance allows CNNs to generalize across
the spatial dimensions. For example, observing a cat breed during training, should allow CNNs to
classify the cat, even if it appears in different image position at test time. The convolution operator
computes for each pixel, a representation from a patch surrounding the pixel. The size of the patch is
determined by the support of the convolutional filter that parametrizes the layer.

2.2 Graph Convolutional Networks

Model: We review the Graph Convolutional Network proposed by Kipf & Welling [11]. They define
the Graph Convolutional (GC) Layer, as:

H(l+1) = σ(ÂH(l)W (l)), (1)

1Edge in vision refer to adjacent patches with different colors. In the graph’s analogy, we do not refer to an
edge between two nodes, but refer to nodes at the boundary of sub-graphs with different neighborhood structures.

2

Model 2k-0.5 2k-0.9 5k-0.5 5k-0.9
GCN [11] 48.5 88.8 42.2 82.7

P={1, 2} 48.4 98.8 43.5 92.6
P={0, 1, 2} 53.0 95.1 42.9 97.4
P={0, 1, 3} 54.3 100.0 45.6 99.9
P={1, 2, 3} 51.2 98.4 46.9 99.9
P={1, 2, 3, 4} 48.7 98.7 47.4 98.9

Dataset N M d0 Classes
Citeseer 3,327 4,732 3,703 6
Cora 2,708 5,429 1,433 7
Pubmed 19,717 44,338 500 3

(a) Top: Classification accuracy on the four syn-
thetic datasets. Bottom: statistics of citation datasets,
where d0 denotes the node features dimensionality

Model Citeseer Cora Pubmed
ManiReg [3] 60.1 59.5 70.7
SemiEmb [19] 59.6 59.0 71.1
LP [21] 45.3 68.0 63.0
DeepWalk [16] 43.2 67.2 65.3
ICA [15] 69.1 75.1 73.9
Planetoid [20] 64.7 75.7 77.2
GCN [11] 70.3 81.5 79.0

P={1, 2, 3} 71.2±0.94 81.6±0.47 80.0±0.64
P={1, 2, 3, 4} 71.2±0.84 81.6±0.63 80.1±0.65

(b) Node Classification Accuracy on the citation datasets gen-
erated by [20]. ± represents standard deviation, each corre-
sponding to 50 runs with different random initializations.

Table 1: Experiments on synthetic and citation graph datasets. Our models are denoted P={. . . }.

Where H(l) ∈ RN×dl and H(l+1) ∈ RN×dl+1 are the input and output activations for layer l.
N denotes the number of graph nodes. W (l) ∈ Rdl×dl+1 is a trainable weights matrix and σ is
element-wise non-linearity. Â is a symmetrically normalized adjacency matrix with self-connections.
It can be constructed by first assembling the binary adjacency matrix A ∈ {0, 1}N×N , add self-
connections: A := A + IN , calculate node degrees d ∈ RN as di =

∑
j Aij , place in a diagonal

matrix: D = diag(d), then apply the symmetric normalization to produce Â as Â = D−
1
2AD−

1
2 . A

GCN model with L layers can be constructed by setting H(0) = X , applying the GC layer (Equation
1) L times for l = 0, 1, . . . , L− 1, then set the output of the GCN as Y = H(L), with Y ∈ RN×dL .

Popularity: The rapid widespread of the GCN model of [11] can be attributed to many factors,
including: (1) its linear computional complexity in the number of edgesM , (2) it can be converted into
a stochastic (mini-batch) settings [7], and (3) it is relatively simple to program using computational
software frameworks including TensorFlow [6]. Nonetheless, the main issue we address in this paper,
is that GCN of [11] is an over-simplification of the graph convolution, defined as multiplication in
the Graph Fourier Basis (i.e. the eigenvectors of the Graph Laplacian) [4, 5, 11]. Concretely, the
simplifications of [11] effectively render the GC layer of [11] as a neighborhood-averaging operator.

We summarize three simplifying assumptions of [11]. First, it is a rank-2 approximation to multi-
plication in the Graph Fourier basis, defined to be the eigenbasis of the graph Laplacian; Second,
they assume that the two co-efficients to the Chebyshev polynomials multiply to -1, which is then
later justified by their, third, renormalization trick, of adding the self-connections (identity matrix)
to A before, rather than after, normalization; Altogether, these simplifications are well motivated:
for computational efficiency and for preventing exploding/vanishing gradients, but the second and
third simplifications restricts their convolution to be a neighborhood-averaging operator. Even though
GraphSAGE [7], propose replacing the averaging with arbitrary aggregation, their results report
negligible wins compared to averaging, even with expressive aggregators such as LSTM [9].

2.3 Semi-supervised Node Classification

We evaluate our model in semi-supervised node classification tasks. That is, only a portion of the
node labels are given. For training a GCN model on such a task, it is possible to select row slices from
Y , corresponding to nodes with known labels, on which a loss and its gradients can be evaluated. The
gradient of the loss can be backpropagated, through the GC layers, each multiplying by the transpose
of Â, effectively spreading the gradients from labeled to unlabeled examples.

3 Our Proposed Architecture
Motivation: Unlike the model of [4], if we convert the model of [11] back to the Euclidean domain,
it will no longer be able to learn the oriented edge detectors. Relating to the motivating example of
online social networks, it can be informative to detect users that live around the “boundary” of social
circles, that is: their immediate friends mostly exhibit some features, but the friends of their friends
exhibit different features. In this work, we are motivated to design a layer that works on patches

3

centered around the node, which includes 1-hop, 2-hop, ... neighbors in distinct feature spaces such,
that they can be effectively combined.

Model: We propose replacing the Graph Convolution layer (GC) of [11], defined in Equation 1, with:

H(l+1) =

∥∥∥∥∥
j∈P

σ
(
ÂjH(l)W

(l)
j

)
, (2)

where P is a set of integers, the powers that we consider (Figure 1b corresponds to P = {1, 2, 3}) ,
Âj denotes the matrix Â multiplied by itself j times, and ‖ denotes column-wise concatenation. Each
layer now contains |P | distinct parameter matrices. However, in our experiments, we used thin Wj’s
e.g. Wj ∈ R.×10, so that the total number of parameters is the same as vanilla GCN’s.

Computational Complexity: It is key to our algorithm that we never compute Âj . Instead, we
multiply ÂjH(l) right-to-left. Specifically, if j = 3, we calcluate Â3H(l) as Â

(
Â
(
ÂH(l)

))
.

Since we store Â as a sparse matrix with M non-zero entries, this chain of multiplications takes
O(j ×M × dl). An efficient dynamic-programming implementation of our layer (Equation 2) takes
O(jmax ×M × dl) computational time, where jmax is the largest element in P . Under the realistic
assumptions of jmax � M and dl � M , running an L-layer model takes O(LM) computational
time, matching the vanilla GCN [11].

Representational Capability: Since each layer outputs the multiplication of different adjacency
powers in different columns, the next layer’s weights (when multiplied from the right) can learn
abitrary linear combinations of the columns. As such, it is able to assign positive coefficient to
columns produced by some Â power and negative to another, allowing it to learn a delta operator.
Such a representational capability is not possible with vanilla GCNs, even if they were deep, as their
depth only allows them to average from more neighborhoods but in no way their model can learn the
difference (in the feature space) between immediate and further neighbors.

Related Work: Other methods also mix powers of the adjaceny matrix, including [1, 2] which
combine the powers at the end of the network (right before classification layer), and [14] which
combines them at the input of the network. In our work, we mix the powers at every layer, enabling
our method to learn delta operators.

4 Experimental Results
Datasets: As summarized in Table 1, We conduct node classification experiments on synthetic and
real-world datasets. Our synthetic datasets are generated in the manner of [10]. We generate 4 graphs:
2k-0.5, 2k-0.9, 5k-0.5 and 5k-0.9. The 2k-* each contain 2000 nodes and 4 classes, and the 5k contain
5000 nodes and 10 classes. The fraction indicate the likelihood that a node forms a connection
to another with the same label (ie, the network’s homophily coefficient: 0.5 or 0.9). The features
for all synthetic nodes were sampled from overlapping multi-gaussian distributions. We randomly
partition each graph nodes into train, test, and validation splits, all of equal size. The experiments
with real-world datasets follow the methodology proposed in [20].

Training: For all experiments, we construct a 2-layer network of our model using TensorFlow [6].
We train our models, using Gradient Descent optimizer, for a maximum of 1000 steps, with initial
learning rate of 0.005 that decays by 15% every 20 steps. As we use early-stopping, specifically
terminate training if validation accuracy does not improve for 40 consecutive steps, most runs finish
in less than 200 steps. We use 5× 10−4 L2 regularization on the first layer, and 50% dropout. We
note that the citation datasets are extremely sensitve to initializations, with some runs train accuracy
quickly approaching 100% but with bad validation and test accuracies. For that, we run all models
100 times, sort by the validation accuracy, then report the test accuracy for the top 50 runs. For all
model configurations (GCN and ours), we use latent dimension of 30 i.e. for GCN, W ∈ Rd0×30 for
the first layer and for us, we divide the 30 evenly to all |P | powers. We plan to release our synthetic
datasets and code so that others can reproduce and extend our method.

5 Conclusion
We propose a graph convolutional layer that utilizes multiple powers of the adjacency matrix.
Repeated application of this layer into a graph convolutional network model, allows the model to
learn both averaging and delta operators in the feature space, as a function of node distances. While

4

we focused this short paper on applying our proposal to vanilla GCNs, it is possible to implement
our method in more sophisticated frameworks including the recent GAT [18]. We believe that our
method is general, and can apply to different applications of Graph Convolution.

References
[1] S. Abu-El-Haija, A. Kapoor, B. Perozzi, and J. Lee. N-gcn: Multi-scale graph convolution for

semi-supervised node classification. In KDD Workshop: Mining and Learning with Graphs,
2018.

[2] J. Atwood and D. Towsley. Diffusion-convolutional neural networks. In Advances in Neural
Information Processing Systems (NIPS), 2016.

[3] M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework
for learning from labeled and unlabeled examples. In Journal of machine learning research
(JMLR), 2006.

[4] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and locally connected
networks on graphs. In International Conference on Learning Representations, 2014.

[5] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. In Advances in Neural Information Processing Systems
(NIPS), 2016.

[6] M. A. et al. TensorFlow: Large-scale machine learning on heterogeneous systems. 2015.

[7] W. Hamilton, R. Ying, and J. Leskovec. Inductive representation learning on large graphs. In
NIPS, 2017.

[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[9] S. Hochreiter and J. Schmidhuber. Long short-term memory. In Neural Computation, 1997.

[10] F. Karimi, M. Genois, C. Wagner, P. Singer, and M. Strohmaier. Visibility of minorities in social
networks. In arxiv/1702.00150, 2017.

[11] T. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations, 2017.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information Processing Systems, 2012.

[13] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional deep belief networks for scalable
unsupervised learning of hierarchical representations. In International Conference on Machine
Learning, 2009.

[14] J. B. Lee, R. A. Rossi, X. Kong, S. Kim, E. Koh, and A. Rao. Higher-order graph convolutional
networks. In arxiv/1809.07697, 2018.

[15] Q. Lu and L. Getoor. Link-based classification. In International Conference on Machine
Learning (ICML), 2003.

[16] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social representations. In
Knowledge Discovery and Data Mining, 2014.

[17] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and
A. Rabinovich. Going deeper with convolutions. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2015.

[18] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio. Graph attention
networks. In International Conference on Learning Representations, 2018.

[19] J. Weston, F. Ratle, H. Mobahi, and R. Collobert. Deeplearning via semi-supervised embedding.
In Neural Networks: Tricks of the Trade, pages 639–655, 2012.

5

[20] Z. Yang, W. Cohen, and R. Salakhutdinov. Revisiting semi-supervised learning with graph
embeddings. In International Conference on Machine Learning (ICML), 2016.

[21] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using gaussian fields and
harmonic functions. In International Conference on Machine Learning (ICML), 2003.

6

	Introduction
	Background
	Convolutional Neural Networks
	Graph Convolutional Networks
	Semi-supervised Node Classification

	Our Proposed Architecture
	Experimental Results
	Conclusion

