
Watch Your Step: Learning Node Embeddings via Graph Attention
Sami Abu-El-Haija‡, Bryan Perozzi†, Rami Al-Rfou†, Alex Alemi†
‡ USC ISI, † Google AI (: sami@haija.org, bperozzi@acm.org)

Overview
� Task. Embedding a Graph: mapping nodes onto a d-dimensional continuous vector space.

� Why? Continuous Representations can then be used for task-specific ML models (e.g. Link Prediction or Node Classification).

� Motivation. Embedding methods based on Random Walks [2] produce powerful representations. However, they operate in two discrete steps
(Random Walks then Representation Learning), and contain hyper-parameters (e.g. walk length) that must be tuned per graph.

� Our Contribution. We replace previously-fixed hyper-parameters with trainable parameters that we automatically tune by back-propagation
while jointly learning node embeddings.

� Method. The hyper-parameters impose a distribution on every node’s neighbourhood, which we term context distribution and denote Q. We
learn Q that best-preserves the graph structure. We parametrize Q as an attention model on the power series of the graph transition matrix.

� Results. Our method significantly improves performance on Link Prediction by 20%-40% for all graphs. Further, the automatically-learned
context distribution agrees with the optimal hyper-parameter choices, if we manually tune existing methods.

DeepWalk Ours

social
graph

voting
graph

Problem Statement

� Given a graph G = (V ,E), an embedding algorithm produces matrix Y ∈ R|V |×d with row
Yu being the d-dimensional (embedding) representation for node u ∈ V .

� Embeddings should preserve the structure of the graph: two node embeddings should be
close if they are neighbors.

� Quality of embeddings can be measured on link-prediction tasks, as it is desirable to gener-
alize to unseen information.

Classical Approach

Earlier approaches to Node Embeddings include Laplacian Eigenmaps [1]:

min
Y

∑
(u,v)∈E

||Yu − Yv ||22, (1)

Solved as eigendecomposition of graph Laplacian matrix, which avoids trivial solutions and is
equivalent to applying orthonormality constraints: Ydiag(~1>A)Y> = I.

2D Embedding of Karate Club Network [2]:

1

2

3
4

5

6

7

8
9

11

12

13

14

18

20

22

32

31

10

28

29

33

17

34

15

16

19

21

23

24

26

30

25

27

1

2

3
4

5

6

7

8
9

11

12

13

14

18

20

22

32

31

10

28

29

33

17

34

15

16

19

21

23

24

26

30

25

27

Input Graph

Embedding
Algorithm=⇒

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5

1.8

1.6

1.4

1.2

1.0

0.8

0.6

34

1

33

3

24

32

9

24

14

8

31

30

28

67

11

5

29

26

20

25

16

2315

22

27

19

21

13

1810

17
12

Node Vector Space

Review: Embedding via Random Walks

Introduced by Perozzi et al [2], this family of algorithms (including AsymProj[3], node2vec[4]):
� Operate in two disjoint steps of (i) Random Walk simulation; (ii) Representation Learning.
� Each of the steps has hyper-parameters
� Step (ii) is done by training a Skipgram model (from word2vec [5]) over the walk sequences.

Skipgram Context in Graphs (as used by DeepWalk, n2v, etc):

Walker

v1

v5

v1

v3

v9

v3

v9

v5

v9

v7

v1︸︷︷︸
anchor

→ v3→ v9→ v7→ . . .

C = 3 context choices

� Depicted for context size C = 3. At each (anchor) node along sequence, a coin is flipped
uniformly: c ∼ U{1,C}, which determines the context nodes that get selected.

� Embedding of Anchor is brought closer to the context.
� The sampling process (rather than fixing c = C) is crucial per [6].

Weaknesses of Existing Methods:
� One must do a large exploration on hyper-parameters Quality of embeddings heavily de-

pends on C and each graph prefers its own value (e.g. tuning node2vec [4]):

1 2 3 4 5 6 7 8 9 10
C

0.9900

0.9905

0.9910

0.9915

0.9920

0.9925

RO
C-

AU
C

facebook

1 2 3 4 5 6 7 8 9 10
C

0.70

0.75

0.80

0.85

ppi

1 2 3 4 5 6 7 8 9 10
C

0.60

0.61

0.62

0.63

0.64

wiki-vote

� Even though C can be manually-tuned, most of these methods use word2vec implementa-
tion and therefore inherit the context sampling: c ∼ U{1,C}.

Deriving our Method: Embedding via Matrix Factorization

� The random walk simulation, context sampling (c ∼ U{1,C}) and representation learning,
can all be replaced by factorizing node-to-node co-occurrence matrix (similar to [7]).

� Let D ∈ RN×N be a node-to-node where Duv counts the event of u appearing c-steps after
v (with c ∼ U{1,C}) across all random walks.

Objective Function: We factorize D using negative-log graph likelihood objective of [3],
written in our notation:

min
L,R

∣∣∣∣∣∣−D ◦ log
(
σ(L× R>)

)
− 1[A = 0] ◦ log

(
1− σ(L× R>)

)∣∣∣∣∣∣
1
, (2)

Where nodes are embedded into two (asymmetric) embedding spaces L,R ∈ RN×d
2 (i.e.

Y = [L|R]) and the pairwise edge scoring model is their outer-product. Indicator function 1[.] is
applied element-wise. L1 norm of the matrix is sum of its entries, which are all positive since
element-wise standard logistic σ : R→ (0,1)

E[D] and Context Distribution Q

� Context Distribution Q assigns higher mass to nearby nodes, but the specific form of Q
depends on hyper-parameters (e.g. C and choice of U). The value of Q affects values in
the node-to-node matrix D.

� As derived in our Appendix, with DeepWalk [2], E [D] can be written as:

E
[
DDEEPWALK;C

]
= P̃(0)

C∑
k=1

[
1− k − 1

C

]
(T)k , (3)

where P̃(0) is a diagonal matrix containing the number of walks to be started from each
node. We set the diagonal entries to 80.

� If GloVe [7] context sampling was used, we derive:

E
[
DGloVe;C

]
= P̃(0)

C∑
k=1

[
1
k

]
(T)k . (4)

� We want to learn the coefficients to (T)k . We propose the parametrized expectation:

E [D;q] = P̃(0)
C∑

k=1

Qk (T)k , (5)

with:
Q1,Q2, · · · = softmax(q1,q2, . . .) and qk ∈ R. (6)

� Our final objective extends Graph Likelihood 2 with attention parameters

min
L,R,q

∣∣∣∣∣∣−E[D;q] ◦ log
(
σ(L× R>)

)
− 1[A = 0] ◦ log

(
1− σ(L× R>)

)∣∣∣∣∣∣
1
, (7)

is minimized w.r.t. node embeddings L,R and attention logit vector q (parametrizes Q)
� Attention parameters q can be thrown-away after training, as they are not part of the model

and are not used for inference.

Experiment and Results

Link Prediction
� Datasets: We use the data splits of [3]. wiki-vote is voting network of Wikipedia. ego-

Facebook is a social network. ca-AstroPh and ca-HepTh are citation networks. PPI is
protein-protein interactions network.

� Baselines: Laplacian EigenMaps [1], Singular Value Decomposition (SVD) on adjacency
matrix, DNGR is a deep auto-encoder network, node2vec (n2v) [4] with two C values (full
C sweep is on left), and AsymProj is [3].

Results
Methods Use: A D E[D] Error

ReductionDataset dim Eigen
Maps SVD DNGR n2v

C = 2
n2v

C = 5
Asym
Proj

Graph Attention
(ours)

64 61.3 86.0 59.8 64.4 63.6 91.7 93.8± 0.13 25.2%wiki-vote 128 62.2 80.8 55.4 63.7 64.6 91.7 93.8± 0.05 25.2%

ego-Facebook 64 96.4 96.7 98.1 99.1 99.0 97.4 99.4± 0.10 33.3%
128 95.4 94.5 98.4 99.3 99.2 97.3 99.5± 0.03 28.6%
64 82.4 91.1 93.9 97.4 96.9 95.7 97.9± 0.21 19.2%ca-AstroPh 128 82.9 92.4 96.8 97.7 97.5 95.7 98.1± 0.49 24.0%

ca-HepTh 64 80.2 79.3 86.8 90.6 91.8 90.3 93.6± 0.06 22.0%
128 81.2 78.0 89.7 90.1 92.0 90.3 93.9± 0.05 23.8%
64 70.7 75.4 76.7 79.7 70.6 82.4 89.8± 1.05 43.5%PPI 128 73.7 71.2 76.9 81.8 74.4 83.9 91.0± 0.28 44.2%

� Visualizing automatically-learned Q distribution:

1 2 3 4 5 6 7 8 9 10
Q

0.0

0.5

1.0

A
tte

nt
io

n
P

ro
ba

bi
lit

y
M

as
s

ego-Facebook

1 2 3 4 5 6 7 8 9 10
Q

PPI

1 2 3 4 5 6 7 8 9 10
Q

wiki-vote

= 0.3
= 0.5
= 0.7

Unsupervised Node Classification: Cora t-SNE: node2vec Ours

Dataset n2v
C = 5

Graph Attention
(ours)

Cora 63.1 67.9
Citeseer 45.6 51.5

References

[1] Belkin & Niyogi, Laplacian Eigenmaps, Neural Computation 2003.
[2] Perozzi et al, DeepWalk, KDD 2014
[3] Abu-El-Haija et al, Edge Representation, CIKM 2017
[4] Grover & Leskovec, node2vec, KDD 2016
[5] Mikolov et al, word2vec, NIPS 2013
[6] Levy et al, Improving Distributional Sim., TACL 2015
[7] Pennington et al, GloVe, EMNLP 2014

Source code available at: http://sami.haija.org/graph/context

http://sami.haija.org/graph/context

