Overview

- **Task.** Embedding a Graph: mapping nodes onto a d-dimensional continuous vector space.
- **Why?** Continuous Representations can then be used for task-specific ML models (e.g. Link Prediction or Node Classification).
- **Motivation.** Embedding methods based on Random Walks [2] produce powerful representations. However, they operate in two discrete steps (Random Walks then Representation Learning), and contain hyper-parameters (e.g. walk length) that must be tuned per graph.
- **Our Contribution.** We replace previously-fixed hyper-parameters with trainable parameters that we automatically tune by back-propagation while jointly learning node embeddings.
- **Method.** The hyper-parameters impose a distribution on every node's neighbourhood, which we term context distribution and denote \(Q \). We learn \(Q \) that best preserves the graph structure. We parameterize \(Q \) as an attention model on the power series of the graph transition matrix.
- **Results.** Our method significantly improves performance on Link Prediction by 20%-40% for all graphs. Further, the automatically-learned context distribution agrees with the optimal hyper-parameters we choose, if we manually tune existing methods.

Problem Statement

- Given a graph \(G = (V, E) \), an embedding algorithm produces matrix \(Y \in \mathbb{R}^{V \times d} \) with \(Y_v \) being the \(d \)-dimensional (embedding) representation for node \(v \in V \).
- Embeddings should preserve the structure of the graph: two node embeddings should be close if they are neighbors.
- Quality of embeddings can be measured on link-prediction tasks, as it is desirable to generalize to unseen information.

Classical Approach

Earlier approaches to Node Embeddings include Laplacian Eigenmaps [1]:

\[
\min \sum_{i=1}^{n} ||Y_u - Y_v||^2 \quad (1)
\]

Solved as eigendecomposition of graph Laplacian, which avoids trivial solutions and is equivalent to applying orthonormality constraints: \(Y_u A Y_v = I \).

2D Embedding of Karate Club Network [2]:

Embedding Algorithm

![Image of embedding algorithm]

Input Graph

![Image of input graph]

Node Vector Space

Review: Embedding via Random Walks

Introduced by Perozzi et al [2], this family of algorithms (including AsymPro[3], node2vec[4]):
- Operate in two disjoint steps of (i) Random Walk simulation, (ii) Representation Learning.
- Each of the steps has hyper-parameters
- Step (ii) is done by training a Skipgram model (from word2vec [5]) over the walk sequences.

Skipgram Context in Graphs (as used by DeepWalk, node2vec, etc.):

\[
C = \{ u, v \} \quad (6)
\]

C - 3 context choices

Walk Graph

![Image of walk graph]

Node Vector

Even though \(C \) can be manually tuned, most of the methods use word2vec implementation and therefore inherit the context sampling: \(c \sim (1/C) \).

Deriving our Method: Embedding via Matrix Factorization

- The random walk simulation, context sampling (\(c \sim (1/C) \)) and representation learning, can all be replaced by factorizing node-to-node co-occurrence matrix (similar to [7]).
- Let \(D \in \mathbb{R}^{N \times N} \) be a node-to-node where \(D_{uv} \) counts the event of \(u \) appearing \(c \) steps after \(v \) (with \(c \sim (1/C) \)) across all random walks.

Objective Function: We factorize \(D \) using negative-log graph likelihood objective of [3], written in our notation:

\[
\min_{L,R} \left\{ D \cdot \log (\sigma (L \cdot R^\top)) - \left[A - \sigma \right] \cdot \log \left(1 - \sigma (L \cdot R^\top) \right) \right\}. \quad (2)
\]

Where nodes are embedded into two (asymmetric) embedding spaces \(L, R \in \mathbb{R}^{N \times \frac{d}{2}} \) (i.e. \(Y = [L; R] \) and the pairwise edge scoring model is their outer-product. Indicator function \(\sigma \) is applied element-wise. \(\| \cdot \| \) norm of the matrix is sum of its entries, which are all positive since element-wise standard logistic \(\sigma : \mathbb{R} \rightarrow (0, 1) \).

\(D \) and Context Distribution \(Q \)

- Context Distribution \(Q \) assigns higher mass to nearby nodes, but the specific form of \(Q \) depends on hyper-parameters (e.g. \(C \) and choice of \(i \)). The value of \(Q \) affects values in the node-to-node matrix \(D \).
- As derived in our Appendix, with DeepWalk [2], \(\mathbb{E}[D] \) can be written as:

\[
\mathbb{E}[D_{G(walk)}] = \sum_{i} (1 - \frac{q_i}{\sum_{j} q_j}) \cdot C \cdot \log \left(\frac{1}{||C||} \right) . \quad (3)
\]

where \(R \) is a diagonal matrix containing the number of walks to be started from each node. We set the diagonal entries to 80.
- If GloVe [7] context sampling was used, we derive:

\[
\mathbb{E}[D_q] = R \cdot \sum_{i} (1 - \frac{q_i}{\sum_{j} q_j}) \cdot C \cdot \log \left(\frac{1}{||C||} \right) . \quad (4)
\]

We want to learn the coefficients of \((T^\top) \). We propose the parametrized expectation:

\[
\mathbb{E}[D_q] = \sum_{i} (1 - \frac{q_i}{\sum_{j} q_j}) \cdot O_q(T^\top) \cdot (5)
\]

with:

- \(O_q : \mathbb{R} \rightarrow \mathbb{R} \)
- \(\sum_{i} (1 - \frac{q_i}{\sum_{j} q_j}) \cdot O_q(T^\top) \cdot (5)
\]

Our final objective extends Graph Likelihood with attention parameters

\[
\min_{L,R,q} \mathbb{E}[D_{G(walk)}] - \left[A - \sigma \right] \cdot \log \left(1 - \sigma (L \cdot R^\top) \right) \quad (6)
\]

is minimized w.r.t. node embeddings \(L,R \) and attention logit vector \(q \) parametrizes \(Q \)
- Attention parameters \(q \) can be thrown-away after training, as they are not part of the model and are not used for inference.

Experiment and Results

Link Prediction

- **Datasets:** We use the data splits of [3]. wiki-vote is a voting network of Wikipedia. ego-Facebook is a social network. co-AstroPh and co-HePTh are citation networks. PPI is protein-protein interactions network.
- **Baselines:** Laplacian EigenMaps [1]. Singular Value Decomposition (SVD) on adjacency matrix. DNGR is a deep auto-encoder network, node2vec (node2vec) [4] with two C values (full sweep is on left), and AsymPro is [3].

Results

Dataset

- wiki-vote
- ego-Facebook
- co-AstroPh
- co-HePTh
- PPI

Methods

- EigenMaps
- GloVe
- DNGR
- node2vec
- AsymPro

Error Reduction

- wiki-vote
- ego-Facebook
- co-AstroPh
- co-HePTh
- PPI

Unsupervised Node Classification

- Cora
- Citeseer
- Pubmed

References

[7] Pennington et al, GloVe, EMNLP 2014

Source code available at: http://sami.haija.org/graph/context