

Watch Your Step: Learning Node Embeddings via Graph Attention

USCUniversity of Southern California

Sami Abu-El-Haija[‡], Bryan Perozzi[†], Rami Al-Rfou[†], Alex Alemi[†] (□: sami@haija.org, bperozzi@acm.org) USC ISI, [†] Google AI

Overview

- **Task.** *Embedding a Graph*: mapping nodes onto a *d*-dimensional continuous vector space.
- > Why? Continuous Representations can then be used for task-specific ML models (e.g. Link Prediction or Node Classification).
- > Motivation. Embedding methods based on Random Walks [2] produce powerful representations. However, they operate in two discrete steps (Random Walks then Representation Learning), and contain hyper-parameters (e.g. walk length) that must be tuned per graph.
- > Our Contribution. We replace previously-fixed hyper-parameters with trainable parameters that we automatically tune by back-propagation while jointly learning node embeddings.
- > Method. The hyper-parameters impose a distribution on every node's neighbourhood, which we term *context distribution* and denote Q. We learn Q that best-preserves the graph structure. We parametrize Q as an attention model on the power series of the graph transition matrix.
- > Results. Our method significantly improves performance on Link Prediction by 20%-40% for all graphs. Further, the automatically-learned context distribution agrees with the optimal hyper-parameter choices, if we manually tune existing methods.

Problem Statement

- ▷ Given a graph G = (V, E), an embedding algorithm produces matrix $\mathbf{Y} \in \mathbb{R}^{|V| \times d}$ with row Y_u being the *d*-dimensional (embedding) representation for node $u \in V$.
- > Embeddings should preserve the structure of the graph: two node embeddings should be close if they are neighbors.

$\mathbb{E}[\mathbf{D}]$ and Context Distribution Q

 \triangleright Context Distribution Q assigns higher mass to nearby nodes, but the specific form of Q depends on hyper-parameters (e.g. C and choice of \mathcal{U}). The value of Q affects values in the node-to-node matrix **D**.

> Quality of embeddings can be measured on link-prediction tasks, as it is desirable to generalize to unseen information.

Classical Approach

Earlier approaches to Node Embeddings include Laplacian Eigenmaps [1]:

$$\min_{\mathbf{Y}} \sum_{(u,v)\in E} ||Y_u - Y_v||_2^2,$$
(1)

Solved as eigendecomposition of graph Laplacian matrix, which avoids trivial solutions and is equivalent to applying orthonormality constraints: \mathbf{Y} diag $(\mathbf{1}^{\top}\mathbf{A})\mathbf{Y}^{\top} = I$.

2D Embedding of Karate Club Network [2]:

Review: Embedding via Random Walks

Introduced by Perozzi et al [2], this family of algorithms (including AsymProj[3], node2vec[4]):

 \triangleright As derived in our Appendix, with DeepWalk [2], \mathbb{E} [D] can be written as:

$$\mathbb{E}\left[\mathbf{D}^{\mathsf{D}\mathsf{E}\mathsf{E}\mathsf{P}\mathsf{W}\mathsf{A}\mathsf{L}\mathsf{K}};C\right] = \tilde{\mathbf{P}}^{(0)}\sum_{k=1}^{C}\left[1-\frac{k-1}{C}\right](\mathcal{T})^{k},\tag{3}$$

where $\tilde{\mathbf{P}}^{(0)}$ is a diagonal matrix containing the number of walks to be started from each node. We set the diagonal entries to 80.

 \triangleright If GloVe [7] context sampling was used, we derive:

$$\mathbb{E}\left[\mathbf{D}^{\text{GloVe}}; C\right] = \tilde{\mathbf{P}}^{(0)} \sum_{k=1}^{C} \left[\frac{1}{k}\right] (\mathcal{T})^{k}.$$
(4)

 \triangleright We want to learn the coefficients to $(\mathcal{T})^k$. We propose the parametrized expectation:

$$\mathbb{E}\left[\mathbf{D};\mathbf{q}\right] = \tilde{\mathbf{P}}^{(0)} \sum_{k=1}^{C} Q_k \left(\mathcal{T}\right)^k, \tag{5}$$

with:

$$Q_1, Q_2, \dots = \operatorname{softmax}(q_1, q_2, \dots) \text{ and } q_k \in \mathbb{R}.$$
 (6)

> Our final objective extends Graph Likelihood 2 with attention parameters

$$\min_{\mathbf{L},\mathbf{R},\mathbf{q}} \left\| -\mathbb{E}[\mathbf{D};\mathbf{q}] \circ \log\left(\sigma(\mathbf{L}\times\mathbf{R}^{\top})\right) - \mathbf{1}[\mathbf{A}=0] \circ \log\left(1 - \sigma(\mathbf{L}\times\mathbf{R}^{\top})\right) \right\|_{1},$$
(7)

is minimized w.r.t. node embeddings L, R and attention logit vector q (parametrizes Q) > Attention parameters **q** can be thrown-away after training, as they are not part of the model and are not used for inference.

Experiment and Results

Link Prediction

- **Datasets:** We use the data splits of [3]. *wiki-vote* is voting network of Wikipedia. *ego-* \triangleright Facebook is a social network. ca-AstroPh and ca-HepTh are citation networks. PPI is protein-protein interactions network.
- > Operate in two disjoint steps of (i) Random Walk simulation; (ii) Representation Learning.
- ▷ Each of the steps has hyper-parameters
- \triangleright Step (ii) is done by training a Skipgram model (from word2vec [5]) over the walk sequences.

Skipgram Context in Graphs (as used by DeepWalk, n2v, etc):

- \triangleright Depicted for context size C = 3. At each (anchor) node along sequence, a coin is flipped uniformly: $c \sim \mathcal{U}\{1, C\}$, which determines the context nodes that get selected.
- ▷ Embedding of Anchor is brought closer to the context.
- \triangleright The sampling process (rather than fixing c = C) is crucial per [6].

Weaknesses of Existing Methods:

> One must do a large exploration on hyper-parameters Quality of embeddings heavily depends on C and each graph prefers its own value (e.g. tuning node2vec [4]):

Baselines: Laplacian *EigenMaps* [1], Singular Value Decomposition (*SVD*) on adjacency matrix, DNGR is a deep auto-encoder network, node2vec (n2v) [4] with two C values (full C sweep is on left), and AsymProj is [3].

Results

		Methods Use: A			D			$\mathbb{E}[D]$	Error
Dataset	dim	Eigen	SVD	DNGR	n2v	n2v	Asym	Graph Attention	Reductior
		Maps			<i>C</i> = 2	C = 5	Proj	(ours)	
wiki-vote	64	61.3	86.0	59.8	64.4	63.6	91.7	$\textbf{93.8} \pm \textbf{0.13}$	25.2%
	128	62.2	80.8	55.4	63.7	64.6	91.7	93.8 ± 0.05	25.2%
ego-Facebook	64	96.4	96.7	98.1	99.1	99.0	97.4	99.4 ± 0.10	33.3%
	128	95.4	94.5	98.4	99.3	99.2	97.3	99.5 ± 0.03	28.6%
ca-AstroPh	64	82.4	91.1	93.9	97.4	96.9	95.7	97.9 ± 0.21	19.2%
	128	82.9	92.4	96.8	97.7	97.5	95.7	98.1 ± 0.49	24.0%
ca-HepTh	64	80.2	79.3	86.8	90.6	91.8	90.3	93.6 ± 0.06	22.0%
	128	81.2	78.0	89.7	90.1	92.0	90.3	93.9 ± 0.05	23.8%
PPI	64	70.7	75.4	76.7	79.7	70.6	82.4	89.8 ± 1.05	43.5%
	128	73.7	71.2	76.9	81.8	74.4	83.9	91.0 ± 0.28	44.2%

\triangleright Visualizing automatically-learned Q distribution:

Ours

> Even though C can be manually-tuned, most of these methods use word2vec implementation and therefore inherit the context sampling: $c \sim \mathcal{U}\{1, C\}$.

Deriving our Method: Embedding via Matrix Factorization

 \triangleright The random walk simulation, context sampling ($c \sim \mathcal{U}\{1, C\}$) and representation learning, can all be replaced by factorizing node-to-node co-occurrence matrix (similar to [7]). \triangleright Let $\mathbf{D} \in \mathbb{R}^{N \times N}$ be a node-to-node where D_{uv} counts the event of u appearing c-steps after v (with $c \sim \mathcal{U}\{1, C\}$) across all random walks.

Objective Function: We factorize **D** using negative-log graph likelihood objective of [3], written in our notation:

$$\min_{\mathbf{L},\mathbf{R}} \left\| -\mathbf{D} \circ \log \left(\sigma(\mathbf{L} \times \mathbf{R}^{\top}) \right) - \mathbf{1}[\mathbf{A} = 0] \circ \log \left(\mathbf{1} - \sigma(\mathbf{L} \times \mathbf{R}^{\top}) \right) \right\|_{1},$$
(2)

Where nodes are embedded into two (asymmetric) embedding spaces $\mathbf{L}, \mathbf{R} \in \mathbb{R}^{N \times \frac{U}{2}}$ (i.e. $\mathbf{Y} = [\mathbf{L}|\mathbf{R}]$) and the pairwise edge scoring model is their outer-product. Indicator function 1[.] is applied element-wise. L₁ norm of the matrix is sum of its entries, which are all positive since element-wise standard logistic $\sigma : \mathbb{R} \to (0, 1)$

Unsupervised Node Classification: Cora t-SNE: node2vec

References

- [1] Belkin & Niyogi, Laplacian Eigenmaps, Neural Computation 2003.
- [2] Perozzi et al, *DeepWalk*, KDD 2014
- [3] Abu-El-Haija et al, *Edge Representation*, CIKM 2017
- [4] Grover & Leskovec, *node2vec*, KDD 2016
- [5] Mikolov et al, *word2vec*, NIPS 2013
- [6] Levy et al, Improving Distributional Sim., TACL 2015
- [7] Pennington et al, *GloVe*, EMNLP 2014

Source code available at: http://sami.haija.org/graph/context