312 Google Al

Watch Your Step: Learning Node Embeddings via Graph Attention

Sami Abu-El-Haija*, Bryan Perozzi', Rami Al-Rfou', Alex Alemi'
FUSC ISI, T Google Al (= sami@haija.org, bperozzi@acm.org)

=2 USC University of

{7V Southern California

Overview
> Task. Embedding a Graph: mapping nodes onto a d-dimensional continuous vector space.

> Why? Continuous Representations can then be used for task-specific ML models (e.g. Link Prediction or Node Classification).

> Motivation. Embedding methods based on Random Walks [2] produce powerful representations. However, they operate in two discrete steps
(Random Walks then Representation Learning), and contain hyper-parameters (e.g. walk length) that must be tuned per graph.

> Our Contribution. We replace previously-fixed hyper-parameters with trainable parameters that we automatically tune by back-propagation
while jointly learning node embeddings.

> Method. The hyper-parameters impose a distribution on every node’s neighbourhood, which we term context distribution and denote Q. We
learn Q that best-preserves the graph structure. We parametrize Q as an attention model on the power series of the graph transition matrix.

> Results. Our method significantly improves performance on Link Prediction by 20%-40% for all graphs. Further, the automatically-learned
context distribution agrees with the optimal hyper-parameter choices, if we manually tune existing methods.

Problem Statement E[D] and Context Distribution Q

> Given a graph G = (V, E), an embedding algorithm produces matrix Y & RIVI*d with row
Yy, being the d-dimensional (embedding) representation for node u € V.

> Embeddings should preserve the structure of the graph: two node embeddings should be

> Context Distribution Q assigns higher mass to nearby nodes, but the specific form of Q
depends on hyper-parameters (e.g. C and choice of /). The value of Q affects values in
the node-to-node matrix D.

close if they are neighbors. > As derived in our Appendix, with DeepWalk [2], E [D] can be written as:
> Quality of embeddings can be measured on link-prediction tasks, as it is desirable to gener- C
alize to unseen information. R {DDEEPWALK. C} _ p(0) Z 1 _ k-1 (T)K (3)
| k=1 ¢ |

: h -y , . -
Classical Approac where P is a diagonal matrix containing the number of walks to be started from each

Earlier approaches to Node Embeddings include Laplacian Eigenmaps [1]: node. We set the diagonal entries to 80.

_ > If GloVe [7] context sampling was used, we derive:
% Z | Yu— Yulf5, (1) /! o C
(Uv)<E E [DOVe; ¢] — BO)Y H (k. (4)
Solved as eigendecomposition of graph Laplacian matrix, which avoids trivial solutions and is 1 K

equivalent to applying orthonormality constraints: Ydiag(1TA)Y ' = /. . . .
d PPYINg 4 tag() > We want to learn the coefficients to (7)k . We propose the parametrized expectation:

: _ C
2D Embedding of Karate Club Network [2]: £[D. q] = 5(0) Z O (T) k’ 5)
- k=1
)' 6 17 ~0.6| ® “e o8 with:
\ — ® 4 -08r @pe ¢ Ok 3 I Q‘Ia 027 T SOftmaX(q1 , 42, - -) and Qk € R. (6)
s : I ® . L L . .
>%};ﬁ%{~ Embedding - . 0& : ° > Qur final objective extends Graph Likelihood 2 with attention parameters
TR Algorithm e | i \— ' D) - 1A= - T ‘
/‘, V. g t/) | min || ~EID:] o log (o(LxRT)) ~ 1[A=0]clog (1~ (L xR"))]| . (7)
: | is minimized w.r.t. node embeddings L, R and attention logit vector g (parametrizes Q)
S Lo 05 00 05 Lo 15 20 25 > Attention parameters g can be thrown-away after training, as they are not part of the model
Input Graph and are not used for inference.

Node Vector Space

: : : Experiment and Results
Review: Embedding via Random Walks

Link Prediction

> Datasets: We use the data splits of [3]. wiki-vote is voting network of Wikipedia. ego-
Facebook is a social network. ca-AstroPh and ca-HepTh are citation networks. PPl is
protein-protein interactions network.

> Baselines: Laplacian EigenMaps [1], Singular Value Decomposition (SVD) on adjacency
matrix, DNGR is a deep auto-encoder network, node2vec (n2v) [4] with two C values (full
C sweep is on left), and AsymProj is [3].

Introduced by Perozzi et al [2], this family of algorithms (including AsymProj[3], node2vec[4]):
> QOperate in two disjoint steps of (i) Random Walk simulation; (ii) Representation Learning.
> Each of the steps has hyper-parameters
> Step (ii) is done by training a Skipgram model (from word2vec [5]) over the walk sequences.

Skipgram Context in Graphs (as used by DeepWalk, n2v, etc):

| Results
C = 3 context choices Methods Use: A D E[D] Error
.| Eigen n2v | n2v | Asym Graph Attention Reduction
I— Dataset dim \\- ' SVD DNGR =, ~“'5 "o ours)
\Vl-/ — V3= Vg — V7 — ... wiki-vote 64 613 86.0 598 644 636 91.7 93.8 £0.13 25.2%
anchor 128 622 80.8 554 63.7 646 91.7 93.8 £0.05 25.2%
_ _ L 64 | 964 96.7/7 98.1 | 99.1 99.0 974 994 +010 33.3%
> Depicted for context size C = 3. At each (anchor) node along sequence, a coin is flipped ego-Facebook 128 954 945 984 993 992 9713 99 5+ 0.03 28 6%
uniformly: ¢ ~ /{1, C}, which determines the context nodes that get selected. 64 82.4 91 '1 93'9 97°4 96.9 95'7 97'9 4 0'21 19'2%
> Embedding of Anchor is brought closer to the context. ca-AstroPh 108 82.9 92'4 96:8 97:7 97:5 95:7 98:1 n 0:49 24:0%
> The sampling process (rather than fixing ¢ = C) is crucial per [6]. 64 | 802 793 868 906 918 903 93.6 -+ 006 29 0%
o carlepTh 108 812 780 897 901 920 903 939+005 = 23.8%
Weaknesses of Existing Methods: opy 64 707 754 767 79.7 706 824 89.8+105 43.5%
> One must do a large exploration on hyper-parameters Quality of embeddings heavily de- 1281 737 712 769 818 744 839 91.0 + 028 44 2%,
pends on C and each graph prefers its own value (e.g. tuning node2vec [4]): > Visualizing automatically-learned Q distribution:
facebook ppi wiki-vote y 1o ego-Facebook PP wiki-vote
0.9925 0.85 - 0.64 n
O 0.9920 - . . % CE: B 5=0.3
ZF) 0.9910 0.62 A -|CIE_D‘E 0.5 ’3_05
2 0:9905- P 0.61 A Eg B=O7
0.9900 - 0.70 - 060 - Dgf 0.0 et
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 12345678910 123456738910 12345678910
C C C 0 Q Q
> Even though C can be manually-tuned, most of these methods use word2vec implementa- _ e _
tion and therefore inherit the context sampling: ¢ ~ 1/{1, C}. Unsupervised Node Classification: Cora t-&S..NE‘.‘ node2vec (_gurs.
o o gt
n2v | Graph Attention o Jg;am:- ", e o AT A
R 0. Tdy e TR I Syt
Deriving our Method: Embedding via Matrix Factorization Pataset o _ s (ours) < !:E;:?e?ﬁi;{,:g{t} *)e%‘;a»w'?:.ﬁ.
Cora 63.1 67.9 AR e
> The random walk simulation, context sampling (¢ ~ /{1, C}) and representation learning, Citeseer 45.6 51.5 H -4~{§-J::’-; o ' .;:gé:e; K
can all be replaced by factorizing node-to-node co-occurrence matrix (similar to [7]). T e Chi
> Let D € RV*N pe a node-to-node where Dy, counts the event of u appearing c-steps after
v (with ¢ ~ /{1, C}) across all random walks. LSS
o _ | | | - o 1] Belkin & Niyogi, Laplacian Eigenmaps, Neural Computation 2003.
Objective Function: We factorize D using negative-log graph likelihood objective of [3], 21 Perozzi et al, DeepWalk, KDD 2014
written in our notation: . § 3] Abu-El-Haija et al, Edge Representation, CIKM 2017
min || —D o log (U(L x R)) — 1[A = 0] o log (1 —o(L xR))’ . (2) 4] Grover & Leskovec, node2vec, KDD 2016
| ; 5] Mikolov et al, word2vec, NIPS 2013
Where nodes are embedded into two (asymmetric) embedding spaces L, R & RN¥Z (i.e. 6] Levy et al, Improving Distributional Sim., TACL 2015
Y = [L|R]) and the pairwise edge scoring model is their outer-product. Indicator function 1[.] is 7] Pennington et al, GloVe, EMNLP 2014

applied element-wise. L1 norm of the matrix is sum of its entries, which are all positive since
element-wise standard logistic o : R — (0, 1)

Source code available at: http://sami.haija.org/graph/context

http://sami.haija.org/graph/context

